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PROBLEMS OF GRAVITATIONAL STABILITY IN THE
PRESENCE OF A MAGNETIC FIELD
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ABSTRACT

In this paper a number of problems are considered which are related to the gravitational stability of
cosmical masses of infinite electrical conductivity in which there is a prevalent magnetic field. In Section I
the virial theorem is extended to include the magnetic terms in the equations of motion, and it is shown
that when the magnetic energy exceeds the numerical value of the gravitational potential energy, the
configuration becomes dynamically unstable. It is suggested that the relatively long periods of the mag-
netic variables may be due to the magnetic energy of these stars approaching the limit set by the virial
theorem. In Section II the adiabatic radial pulsations of an infinite cylinder along the axis of which a
magnetic field is acting is considered. An explicit expression for the period is obtained. Section III is
devoted to an investigation of the stability for transverse oscillations of an infinite cylinder of incom-
pressible fluid when there is a uniform magnetic field acting in the direction of the axis. It is shown that
the cylinder is unstable for all periodic deformations of the boundary with wave lengths exceeding a cer-
tain critical value, depending on the strength of the field. The wave length of maximum instability is also
determined. It is found that the magnetic field has a stabilizing effect both in increasing the wave length
of maximum instability and in prolonging the time needed for the instability to manifest itself. For a
cylinder of radius R = 250 parsecs and p = 2 X 10724 gm/cm3 a magnetic field in excess of 7 X 107 gauss
effectively removes the instability. In Section IV it is shown that a fluid sphere with a uniform magnetic
field inside and a dipole field outside is not a configuration of equilibrium and that it will tend to become
oblate by contracting in the direction of the field. Finally, in Section V the gravitational instability of an
infinite homogeneous medium in the presence of a magnetic field is considered, and it is shown that Jeans’s
condition is unaffected by the presence of the field.

1. Introduction.—In this paper we shall consider a number of problems relating to
the dynamical and gravitational stability of cosmical masses in which there is a prevalent
magnetic field. In the discussion of these problems, the assumption will be made that
the medium is effectively of infinite electrical conductivity. This latter assumption im-
plies only that the conductivity is large enough for the magnetic lines of force to be con-
sidered as practically attached to the matter during the length of time under considera-
tion; it has been known for some time that this is the case in most astronomical connec-
tions.!

The abstract gives an adequate summary of the paper.

I. THE VIRIAL THEOREM AND THE CONDITION FOR DYNAMICAL STABILITY

2. The virial theorem.—In a subject such as this it is perhaps best that we start by
establishing theorems of the widest possible generality. The extension of the virial
theorem to include the forces derived from the prevailing magnetic field provides such a
starting point. We shall see that under conditions of equilibrium this extension of the
virial theorem leads to the relation

2T+ 3(yv—DU+M+Q=0 ¢))

between the kinetic energy (7)) of mass motion, the heat energy (11) of molecular motion,
the magnetic energy (IN) of the prevailing field, and the gravitational potential energy
(), where v denotes the ratio of the specific heats. That a relation of the form (1) should
exist is readily understood: For the balance between the pressures pyin, Pgas, and pmag due

1 Cif. L. Biermann, Annual Review of Nuclear Science, 2 (Stanford: Annual Reviews, Inc., 1953), 349,
116 "
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GRAVITATIONAL STABILITY 117

to the visible motions, the molecular motions, and the magnetic field, on the one hand,
and the gravitational pressure, pgrav, o0 the other, requires

Pxin + Pgas + Pmag = Derav » (2)
while the order of magnitudes of these pressures are given by
T u H? i3
Prin= 177, Pes= O, Pme= g G, @
and
Perav = Density X gravity X linear dimension = — ¢4 — L (39)

V1

where V denotes the volume of the configuration and ¢, ¢, ¢3, and ¢, are numerical con-
stants. A relation of the form (1) is therefore clearly implied. We now proceed to estab-
lish the exact relation (1).

With the usual assumptions of hydromagnetics, the equations of motion governing
an inviscid fluid can be written in the form

du.-_ I}I‘2 1
P = ax,(?+ )+ ypm 6x H.H;, @

where p denotes the density, p the pressure, V the grav1tat1onal potential, and H the
intensity of the magnetic field. (In eq. [1] and in the sequel, summation over repeated
indices 1s to be understood.)

Multiply equation (4) by x; and integrate over the volume of the configuration.
Reducing the left-hand side of the equation in the usual manner, we find

/f pX; —— dxldxgdxa IMxi%dm

1 d2 oM M
= = ridm — u|2dm
) dtzl _( l l ’

where dm = pdxidxsdx; and the integration is effected over the entire mass, M, of the
configuration. Letting

M 1
— 2 - 2
I [ r?dm  and =3 f]u] dm 6)

denote the moment of inertia and the kinetic energy of mass motion, respectively, we
have

S (s ) g,
47rff/ Py Hdeldx2dx3+foz———dm

The last of the three integrals on the rlght-hand side of this equation represents the
gravitational potential energy, @, of the configuration. The remaining two volume
integrals can be reduced by integration by parts. Thus the first of the two integrals gives

_fffxia—a@(f"l‘l—g%—z) dxidxadxs
/(?—}-]grl?>r-ds+3fff(p+%f>dxldxgdx3,

(5)

()

(8)
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118 S. CHANDRASEKHAR AND E. FERMI

The surface integral (over dS) vanishes, since the pressure (including the magnetic
pressure | H|2/87) must vanish on the boundary of the configuration; and the volume
integral over p and | H|?/8r is readily expressible in terms of the internal energy (1)
and the magnetic energy (J) of the configuration. Thus we have

_ff/xfg‘:’x—i@ju'-gl;]f) daydasdus =3 (y— DHU+3M ©

where v denotes the ratio of the specific heats. In the same way the second volume
integral in equation (7) gives

1 d
ﬂ///‘x"a—xjH"Hfdxld%dxa: —29. (10)
Now, combining equations (7), (9), and (10), we have
’ 1d2]
§W=2T+3(7—1)u+§m+9- an

This is the required generalization of the virial theorem; it differs from the usual one
only in the appearance of it + © in place of Q.

3. The condition for dynamical stability.—If the configuration is one of equilibrium,
then it follows from the virial theorem that

v—DU+M+0=0. (12)
On the other hand, the total energy, &, of the configuration is given by
E=u+M+4Q. 13)
Eliminating U between equations (12) and (13), we obtain
3y—4
= —c0—=(|Q] — . (14)
= — 7 =15 (ol -9

From this equation for the total energy it follows that a mecessary condition for the
dynamical stability of an equilibrium configuration is

By—4(Q =) >0. ) (15)

Thus, even when v > £ (the condition for dynamical stability in the absence of a
magnetic field) a sufficiently strong internal magnetic field can induce dynamical instabil-
ity in the configuration. In fact, according to formula (15), the condition for dynamical
stability, when v > £, is

1
=é‘;fff1H12dxldx2dxs=%R3<H2>w< ], a8

where (H?)4, denotes the mean square magnetic field.
For a spherical configuration of uniform density,

AC.

8= —37%

17

where M is its mass, R is its radius, and G is the constant of gravitation. We can use
this expression for Q to estimate the limit imposed by the virial theorem on the magnetic
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* GRAVITATIONAL STABILITY 119

fields which can prevail. On expressing M and R in units of the solar mass and the solar
radius, we find from equations (16) and (17) that -

VvV (HY . <2. 0X108% gauss. (18)

For the peculiar A stars for which Babcock has found magnetic fields of the order of
104 gauss, we may estimate that

M~40 and R~5Rg (A star); (19)
and expression (18) gives
V(H?) 4y < 3 X 107 gauss (A stars). (192)

Of greater interest is the limit set by expression (18) for an S-type star for which Bab-
cock has found a variable magnetic field of the order of 1000 gauss. For an S-type star
we can estimate that

M~ 150 and R ~300Rg (S star); (20)
and (18) now gives
vV (H?Y) gy < 3 X 10% gauss (S star). (20a)

Thus the limit set by (18) is seen to be two to three orders of magnitude larger than the
surface fields observed by Babcock. However, the fields in the interior may be much
stronger than the surface fields; and it is even possible that the actual root-mean-square
fields in these stars are near their maximum values. Indeed, from the fact that the
periods of the magnetic variables are long compared with the adiabatic pulsation
periods they would have if they were nonmagnetic, we may surmise that v/(H?),y is near
the limit set by (18); for, as is well known, we may lengthen the period of the lowest mode
of oscillation of a system by approaching the limit of dynamical stability; and we can
accomplish this by letting M — |2].

Note added Jumne 17.—Since we wrote this paper, Dr. Babcock has informed us
that he has measured a variable magnetic field (42000 to —1200 gauss) for the star
VV Cephei. It has been estimated that for this star M = 100® and R = 2600Rg .
With these values, inequality (18) gives 1/(H?).y < 3000 gauss. We may conclude that
this star must be on the verge of dynamical stability and, anticipating the result estab-
lished in Section IV, probably highly oblate.

4. The virial theorem for an infinite cylindrical distribution of matter.—Some care is
needed in applying the results of §§ 2 and 3 to a distribution of matter which can be
idealized as an infinite cylinder (such as, for example, a spiral arm); for the potential
energy per unit length of an infinite cylinder is infinite. For this reason it is perhaps best
that we consider the problem de novo.

We shall consider, then, an infinite cylinder in which the prevailing magnetic field is
in the direction of the axis of the cylinder; and we shall suppose that all the variables are
functions only of the distance 7 from the axis of the cylinder. Under these conditions the
equations of motion reduce to the single one

2
P dtr ( +H) ZGm(r) P, " @1)

where m(r) is the mass per unit Iength interior to 7.
Multiplying equation (21) by 2wx7%dr and integrating over the entire range of r, we
find in the usual manner that

2 M M 2
%%5/ 72dm—f %) dm=2(y—1U+2M —GM?, @)
0 0
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120 S. CHANDRASEKHAR AND E. FERMI

where M denotes the mass per unit length of the cylinder and I and 9t are the kinetic
and the magnetic energies per unit length of the cylinder, respectively.
From equation (22) it follows that, under equilibrium conditions, we should have

2(y—=DU+2M —-GM2=0 . (23)

A necessary condition for equilibrium to obtain is, therefore,
m <iGM:. (24)

We can rewrite the condition (24) alternatively in the form
R
=%/o- Hrdr =1 (H?) ., R* <37mRp%G, (25)
or i

vV (H?),, <27RpG . (25a)

This last condition on the root-mean-square field is essentially equivalent to one of the
formulae used in the preceding paper? (eq. [13]) for estimating the magnetic field in the
spiral arm; the difference between the two formulae arises from the fact that in that
paper the gravitational attraction was not limited to the interstellar gas only; allowance
was also made for the stars contributing to the gravitational force acting on the gas.

II. THE RADIAL PULSATIONS OF AN INFINITE CYLINDER

5. The pulsation equation.—In view of the inconclusive nature of the current treat-
ments? of the adiabatic pulsations of magnetic stars, it is perhaps of interest to see how
the corresponding problem in infinite cylinders can be fully solved. We consider, then,
the radial pulsation of an infinite cylinder, along the axis of which there is a prevailing
magnetic field.

Choosing the time ¢ and the mass per unit length, m(r), interior to , as the inde-
pendent variables, we can write the equations of continuity and motion in the forms

d (r7?) ___1 (26)
am p
and 5 aP  2Gm (r)
r m(r
TR Pra—— @0
where \
P= P—{—% (28)

denotes the total pressure. Distinguishing the values of the various parameters for the
equilibrium configuration by a subscript zero and writing

r = ry+ O, P = Py+ 8P, o = po -+ dp, etc. (29)
we find that the equations governing radial oscillations of small amplitudes are
d 6
m(wao(Sr) = ——:2‘:‘ (30)
and 0? ap J 2G
= — 9% 9 m
5‘;567— 27r6ram 271, Fp 8P + p or. (31

0

2 4p. J., 118, 113, 1953.

3 M. Schwarzschild, Ann. d'ap., 12, 148, 1949; G. Gjellestad, Rep. No. 1, Inst. Ther. Ap. (Oslo, 1950),
and Ann. d’ap., 15, 276, 1952; V. C. A, Ferraro and D. J. Memory, M.N., 112, 361, 1952; T. G. Cowling,
M.N., 112, 527, 1952.
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GRAVITATIONAL STABILITY 121
Using the equation
21rro9£9= —?‘Gm, (32)
am o

which must obtain in equilibrium, we can rewrite equation (31) in the form

02 d
———557= —'271'1'0—6—m—

4Gm '
T 6P+—r§-ér. (33)

0
We shall now evaluate §P. For an adiabatic pulsation,

Ho0H _ | 2 Sp+0 22 (34)

0P =2dp+ 47 'Y—;; 47

Now when the medium is of infinite electrical conductivity, the change, AH, at a given
point in a prevailing magnetic field, Hy, caused by a displacement dr, is given quite
generally by

AH = curl (ér X H,) . (35)

This relation is derived in § 14 below (see eq. [130]); but we may note here that it merely
expresses the fact that the changes in the magnetic field are simply a consequence of the
lines of force being pushed aside. According to equation (35), the change in the magnetic
field, 6H, as we follow the motion, is given by

0H = curl (6r X Ho) + (ér-grad) H, . (36)

When Hj is in the s-direction and ér is radial, the only nonvanishing component of 6 H
is

_ 19 0H, H, 9
5Hz-—- 7'(:)—;(H07'57')+67' 37 ——76—;(7’57), 37)
in the z-direction. Hence in the case under consideration |
Hy,-8H  Hipy 0
ety et PrACLACLIOR o
and the expression for 6P becomes
H; )
0P = ‘“(’YPO-I‘E) Po W(ZT?’QB?’), (39)

where we have substituted for 8p in equation (34) in accordance with equation (30).
With 6P given by equation (38), equation (33) takes the form

92 9 i 0 4Gm
T sy = Aty 2 Zy, 2 i
6t26r 47rram 3(7p+47r)pam(rér)%+ p or. (40)

In writing equation (39), we have suppressed the subscripts zero distinguishing the
equilibrium configuration, since there is no longer any cause for ambiguity.
When all the physical variables vary with time like e*¢, equation (39) reduces to

(aQ—J—éGYTm)Br:—47r2r3%3<7p+§>pd—d%(76r)}, @1

where 67 has now the meaning of an amplitude.
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122 S. CHANDRASEKHAR AND E. FERMI
The boundary conditions,

or=0 at m=0 and 6éP=0 at m=M, (42)

in conjunction with the pulsatlon equation (40) will determine for o2 a sequence of pos-
sible characteristic values, 7. And it can be readily shown that the solutions, é&r,
belonging to the different characteristic values, are orthogonal:

M
/ Sredrdm=0 (B=1). @3
0

In view of this orthogonality of the functions é7:, we should expect that the character-
istic values themselves could be determined by a variational method. The basis for this
method is developed in the following section.

6. An integral formula for o and a variational method for determining it.—Multiply
equation (41) by ér and integrate over the range of 7, i.e., from 0 to M. We obtain

02‘/0‘M(67)2dm—l—4G/01M(£;>2 dm

_—_—41r2£Mr6rdd 3<7P+H) P T (rar)z

By integrating by parts the integral on the right-hand side, we obtain

UZfOM(ar)de+4Gf0M (§7’)de =41r2f0M <7p+%:) p[a-(%(rér)rdm. (s)

Writing p = (P — H?/8) in equation (45), we obtain, after some elementary reductions,

a2f (6r)2dm—'yf [ (rar)]dm 4Gf (5’)mdm
to-=m [ L1 L en [am

It can be shown that the foregoing equations give a minimum value for o? when the true
solution ér belonging to the lowest characteristic value of the pulsation equation is sub-
stituted; and any other function & (satisfying the boundary conditions) will give a larger
value for o?. These facts can clearly be made the basis of a variational procedure for
determining o2.

In the theory of the adiabatic pulsations of ordinary stars, it is known* that we get a
very good estimate of o2 (for the fundamental mode) by setting

(44)

(46)

dr = Constant 7, (47)

in an integral formula for ¢? similar to equation (46). We shall assume that this will con-
tinue to be the case in our present problem. Therefore, making the substitution (47) in
equation (46), we obtain

M MP R
2 2 i — - 2 —_ 2
afo redm 47[) S dm = 26M+ (2 ~Y)fO merdr . 48)

¢ P. Ledoux and C. L. Pekeris, 4p. J., 94, 124 1941,
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On the other hand,

MP R _ R dP _ M .
fo ;dm—27rf Prdr_—rfo r2Edr_G/0' mdm = 3GM?.  (@9)

Hence

M R
2 dm=2(y—1)GM? 2 — Hirdr. (50)
o rdm =2 (y=1)GI+ 2 =) [ Herdr
An alternative form of this equation is (cf. eq. [23])

anoMﬂdm =4 (y—1)[3GH— M] +4M
— 4 (y= 12U+ M.

(51)

III. THE GRAVITATIONAL INSTABILITY OF AN INFINITELY LONG CYLINDER WHEN A
CONSTANT MAGNETIC FIELD IS ACTING IN THE DIRECTION OF THE AXIS

7. The formulation of the problem.—In Section IT we have seen that an infinitely long
cylinder in which there is a prevalent magnetic field in the direction of the axis is stable
for radial oscillations. But the question was left open as to whether the cylinder may not
be unstable for transverse or for longitudinal oscillations. In Section IIT we shall take up
the discussion of the transverse oscillations; however, in order not to complicate an
already difficult problem, we shall restrict ourselves to the case when the medium is
incompressible in addition to being an infinitely good electrical conductor.

We picture to ourselves, then, an infinite cylinder of uniform circular cross-section of
radius Ry, along the axis of which a constant magnetic field of intensity H, is acting.
Since any transverse perturbation can be expressed as a superposition of waves of differ-
ent wave lengths, the question of stability can be investigated by considering, indi-
vidually, perturbations of different wave lengths. We suppose, then, that the cylinder
is subject to a perturbation, the result of which is to deform the boundary into

r=R+ acosksz. (52)

Since the fluid is assumed to be incompressible, the mass per unit length must be the same
before and after the deformation; this, clearly, requires that

R2=R>+ %a?. (53)

We shall see that, as a result of the deformation, the mean field in the z-direction is also
changed by an amount of order a? (see eq. [87] below).

The investigation of the stability of the cylinder consists of two parts. First, we must
calculate the change in the potential energy, AQ, and the magnetic energy, AR, per unit
length resulting from the perturbation. Then, depending on whether AQ 4 AR is
positive or negative, we shall have stability or instability. We shall see presently that
AQ 4 A < O for all & less than a certain determinate value depending on H,. In other
words, the cylinder is unstable for all wave lengths exceeding a certain critical value A,.
The determination of A, is the first problem in the investigation of stability. The second
problem concerns the specification of the wave number %, (say) for which the instability
will develop at the maximum rate. We can determine this mode of maximum instability
by considering the amplitude of the deformation (cf. eq. {52]) as a function of time, con-
structing a Lagrangian for the cylinder and determining the manner of increase of the
amplitudes of the unstable modes. We shall find that whenever A > A, (or k < &),
the amplitude increases like e, where ¢ is a function of k£ (and H,). The mode of maxi-
mum instability is clearly the one which makes ¢ (for a given H) a maximum.
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124 S. CHANDRASEKHAR AND E. FERMI

Before proceeding to the details of the calculations, we may state that the method we
have described derives from an early investigation of Rayleigh’s® on the stability of liquid
jets.

8. The change in the polential energy per unit length caused by the deformation.—Follow-
ing the outline given in § 7, we shall first calculate the change in the potential energy,
AQ, per unit length caused by the deformation which makes the cross-section change
from one of a constant radius Ry to one whose boundary is given by equation (52). Since
the potential energy per unit length of an infinite cylinder is infinite, the evaluation of
AQ requires some care. We proceed as follows:

Let U and V denote the external and the internal gravitational potentials of the
deformed cylinder. They satisfy the equations

ViU =0 and V2V =—471Gp. (54)

We shall first solve these equations to the first order in the amplitude e appropriately
for the problem on hand. The solutions must clearly be of the forms

U = —2xGpR? log 7 + aAK(kr) cos kz + cq (s5)
and
V = —aGpr + aBI(kr) cos kz, (552)

where ¢, is an additive constant (with which we need not further concern ourselves),
A and B are constants to be determined, and I, and K, are the Bessel functions of order
n for a purely imaginary argument, which have no singularity at the origin and at
infinity, respectively. ‘

The constants 4 and B in solutions (55) are to be determined by the condition that
U and V and U /dr and dV /dr must be continuous on the boundary (52). Carrying out
the calculations consistently to the first order in ¢, we find that the continuity conditions
require

A Ky (kR) =BI,(kR) (56)
and 4nG )
AKy (kR) +BI, (kR) =—"F. (s68)
Solving these equations, we find
A = 47GpRI(kR) and B = 47GpRK(kR) . 57
The required solution for V is, therefore,
V = —aGpr® + 47GpR aKo(kR)Iy(kr) cos kz + O(a?). (58)

Now suppose that the amplitude of the deformation is increased by an infinitesimal
amount from @ to a + da. The change in the potential energy, JAQ, consequent to this
infinitesimal increase in the amplitude, can be determined by evaluating the work done
in the redistribution of the matter required to increase the amplitude. For evaluating
this latter work, it is necessary to specify in a quantitative manner the redistribution
which takes place; and we shall now do this.

An arbitrary deformation of an incompressible fluid can be thought of as resulting
from a displacement § applied to each point of the fluid. The assumed incompressibility
of the medium requires that div § = 0; and, since no loss of generality is implied by
supposing that the displacement is irrotational, we shall write

£ =grad y, : (59)

§ Lord Rayleigh, Scientific Papers (Cambridge: At the University Press, 1900), 2, 361; also T/eory of
Sound (‘‘Dover Reprints” [New York, 1945]), 2, 350-362.
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GRAVITATIONAL STABILITY 125

and require that

vy = 0. (60)

A solution of equation (60) which is suitable for considering the deformation of a
uniform cylinder into one whose boundary is given by (52) is

¥ = AIy(kr) cos ks, (61)
where 4 is a constant. The corresponding radial and z-components of § are.

& = AkIL(kr) coskz and &, = —AkIy(kr) sin kz. (62)

Since at r = R, & must reduce to a cos kz (cf. eq. [52]), we must have

a

A= 0R)

(63)

The displacemenfs,

Iy (k1)

_ I (kr)
& A3

—(ZWCOSkZ and £z=

sin kz, (64)

applied to each point of the cylinder will deform it into the required shape. The displace-
ment 6§, which must be applied to increase the amplitude from a to @ + éa, is therefore,

I (k1) I, (kr) |
I, (ER) a T, (FR) sin k3. (65)

bf,=da cos k3 and- §8f,= — 3§

The change in the potential energy, §AQ, per unit length involved in the infinitesimal
deformation (65) can be obtained by integrating over the whole cylinder the work done
by the displacement 6§ in the force field specified by the gravitational potential (58). It
is therefore given by

R-+acoskz
6AQ = ——27rp§/ 6. grad Vrdr% , (66)
0 a

\'4

where the averaging is to be done with respect to z. Substituting for ¥ and 6§ from equa-
tions (58) and (65), we obtain

R+acoskz
6AQ=—27rpaagf cos kz Li(kr)
0

I, (kR)
+ 47 pGRak Ky (kR) I, (kr)cos kz] rdr ©7)

R+acoskz. Io(kf) .
+f0 sin &z 7y (47 pGRak K, (kR) I, (k) sin k] rdr%

{ —272Gpr

av

Evaluating the foregoing expression consistently to the first order in a, we find

kK, (kR) =%

TR, Lk FLkn]rdr, 6

S§AQ = 272p’GR?ada — 47%p’GRada
or, using the readily verifiable result,

fR[If(kr)—l—Ig(kr)]rdr=1—l§-I0(kR) I, (ER), (©9)
A .

we have
SAQ = 4m2p°GRY% — Io(x)Ko(x)]ada, (70)
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126 S. CHANDRASEKHAR AND E. FERMI
where for the sake of brevity we have written
x = kR. (71)
Finally, integrating equation (70) over a from O to ¢, we obtain
' AQ = 272p°GRY: — Io(x)Ko(x)]a?. (72)

This is the required expression for the change in the potential energy per unit length
caused by the deformation.

9. The change in the magnetic energy per unit length caused by the deformation.—The
changes in the magnetic field inside the cylinder can best be determined from the condi-
tion that the magnetic induction across any section normal to the axis of the cylinder
must remain unaffected by the deformation. This condition follows from the assumed
infinite electrical conductivity of the medium. Thus, if

Hy, +h (73)

represents the magnetic field inside the cylinder (where 1, is a unit vector in the z-direc-
tion, his a field, of order @, varying periodically with z, and H is the mean field), we must
require that

R R+acoskz
N = /(; Hyrdr = /01 (H+ h,) rdr = Constant . (74)

Turning to the determination of H and h, we may first observe that h can be derived
from a magnetostatic potential ¢ satisfying the equation y%¢ = 0. For the problem on
hand we can represent ¢ as a series in powers of a of the form

¢ = ;1 d;:" Iy (nkr)sin nkz, (75)

where the A4,’s are constants to be determined. Retaining terms up to the second order
in @, we have

h, = aAl(kr) sin kz + a2A2I1(2k7) sin 2kz (76)
and

h, = aAIo(kr) cos kz + a2A214(2kr) cos 2kz (77

for the components of h.
With %, given by equation (77), the magnetic induction across a normal section of the
cylinder is given by
R+a coskz
N=f {H+aAdI,(kr)coskz+a%As1, (2kr)cos 2kz}rdr. (78)
0

Evaluating NV correct to the second order in a, we obtain

N=31H (R*+ta?) +1a24.RI, (kR) + a[HR+-’% I, (kR)R]cos k2

(79)
+ @[ $H+FARL (RR) +5 2RI, (2RR) Jeos 285
and according to equation (74) this must be identically equal to (cf. eq. [53])
3HoR} = 3Ho(R* + 30°) . 80)
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GRAVITATIONAL STABILITY 127
Hence we must require that ‘
1H(R? 4 1a®) + 3a*4.RI,(kR) = $H(R? + }a%) , (81)
A1
HR—I—TII(kR)R:O, (82)
and v
1H+ 3 ARI, (kR) + RIl (2kR) =0. (83)
From equations (82) and (83) we find:
H «x
S S AC) o
and I L) 1
_H o« aly(x) 1
4 =E Lo 3 T, (%) 35 e
where x = kR (cf. eq. [71]).
With 4; given by equation (84), equation (81) gives (correct to order a2)
_ a?x1,(x)
Ho= a1 -5 700 0
or, equivalently, o 21, ()
- @ Xl (%)
H=H1+ g NEa &7

This equation shows that the mean field inside the deformed cylinder is larger than that
in the undeformed cylinder; the difference is of order ¢? and depends on the wave number
of the deformation.

Equations (76), (77), (84), (85), and (87) determine the field inside the cylinder correct
to the second order in @. It may be noted here that the same solution can also be derived
from the alternative (but equivalent) condition that the magnetic lines of force follow
the boundary of the cylinder (52).

With the field inside the cylinder determined, we can now evaluate the magnetic
energy, M, per unit length. We have

=% 3/;R+amkz]H12rdr§av

) 1 R+acoskz ) 2H . 52 d

zzgfo (H*42Hh + b2+ h2) r r%av,
where the averaging is to be done with respect to z. Substituting for %, and %, from equa-
tions (76) and (77) and evaluating I correct to the second order in ¢, we obtain (cf. eq.

[69]) R+tacoskz
Em:%H?(R?—i—%a?)—i—%aH%cos sz A1 I, (k) rdrz
0

(88)

av

R+tacoskz
—{—%a?HAz;cosZsz Io(Zkr)rdr$
0

av (89)

+%a2AffRug<kr> F I (k)] rdr

LH (R4 3a?) +1 a2HA1RIO(kR)+1a2A2R I, (ER) I, (ER) .
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128 S. CHANDRASEKHAR AND E. FERMI

On making further use of equations (53), (84), and (87), we can reduce this last ex-
pression for IN to the form

x1o(x)

M = §HR?+ L a?H? AR (90)

But the magnetic energy per unit length of the undeformed cylinder is $H2R:. Hence
_ 12y ¥ o (%)

AM = ta’H I, () o1

10. The modes of deformation which are unstable.—Combining the results of §§8
and 9, we have

AR+ A = § 207 1GR? 1§ — I (2) K, ()] + L H? “"((x)) . 02
Letting
H? = 16mp*RG or H, = 47pR\/G , (93)
we can rewrite equation (92) more conveniently in the form
— 2 2PR2 1i_ on(x) (£>2 2
AR+ A = 272G | 13— I, (%) Ky (2) ] + 50080 e (7 far. 0w

Whether the mode of deformation considered is stable or unstable will depend upon the
sign of the quantity in braces in the foregoing expression.

Now the asymptotic behaviors of the Bessel functions which appear in equation (94)
are:

Ip(x) > 1, @i(x) >3z, and Kox)— —(y+logix) x—0), 95)

where v (not to be confused with the ratio of the specific heats) is Euler’s constant
0.5772 ..., and

T

e T\ _
_’W, and KO (x) ﬁ(ﬁ) e® (x— © ) . (96)

Hence AQ (cf. eq. [72]) tends to minus infinity logarithmically as x— 0 and tends
monotonically to the positive limit #2p?R?G as x — o, while AJ (cf. eq. [91]) tends to
the positive limit }a?H? as x — 0 and increases monotonically to infinity (linearly) as
2 — . These behaviors of AQ and AIR are illustrated in Figure 1, in which the functions
[} — Iy(x)Ko(x)] and xIo(x)/I:(x) are plotted.

From the asymptotic behaviors of AQ and AJR it follows that the equation

Iy (%) = I (%)

e
(2mx) 172

x1,(x)
b— L) K@) +20 8 (XY g on
allows a single positive root. Let ¥ = x, denote this root. Then
AQ + A >0 for x> a,, (98)
and
AQ4+AM <0 for <. (98a)

Hence all modes of deformation with x < x, are unstable. Since x = kR, x, specifies the
minimum wave number (in units of 1/R) for a stable deformation; alternatively, we
could also say that all modes of deformation with wave lengths exceeding

2R

Ay =
* Zr

(99)

are unsiable.
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Fic. 1.—The dependence of the changes in the potential energy, AQ, and magnetic energy, AT, per
unit length of an infinitely long cylinder on the wave number of the deformation; AQ is proportional to
[3 — Io(x)Ko(x)], while AT is proportional to xIy(x)/I1(x), where x is the wave number measured in

the unit 1/R.

TABLE 1

DEPENDENCE OF WAVE NUMBERS %, AND x, AT WHICH
INSTABILITY FIRST SETS IN AND AT WHICH IT IS
MAXIMUM, ON PREVAILING MAGNETIC FIELD

H/H, %, T am/{4nGp)l/ 2

O......... 1.067 0.58 0.246
0.25......... 0.832 47 .208
0.50......... 0.480 .28 .133
0.75......... 0.232 .14 .0685
1.00......... 0.092 .057 .0281
1.25......... 0.0299 .0182 .0091
1.50......... 0.00757 .00459 .00229
2.00......... 0.000228 0.000139 0.0000693
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130 S. CHANDRASEKHAR AND E. FERMI

In Table 1 we have listed x, for a few values of H/H,. This table exhibits the strong
stabilizing effect of the magnetic field: this is shown in the present connection by the very
rapid increase, with increasing H, of the wave length at which instability sets in. In fact,
for H > H, this increase becomes exponential; this can be shown in the following way:

Since x, = 0.092 already for H = H,, for H > H, we may replace the Bessel func-
tions which occur in equation (97) by their dominant terms for x — 0; thus,

2
%—I—'y-l-log%x*—i—Z(g):O (H>H,) . 100)
Hence '
1 HY
x*=2exp§—[7+§+2 o ]; (H > H,) , ton)
or, numerically, ‘
%e =0.6811e7 272" (gS gy, (102)

11. The mode of maximum instability.—In the preceding section we have seen that an
infinite cylinder is gravitationally unstable for all modes of deformation with wave
lengths exceeding a certain critical value. We shall now show that there exists a wave
length for which the instability is a maximum. For this purpose we shall suppose that
the amplitude, a, of the deformation is a function of time and seek an equation of motion
for it. ,

We have already seen that the potential energy (gravitational plus magnetic) per
unit length of the cylinder measured from the equilibrium state is

B = AM+ AQ = — 27202 R*GF(x)a?, (103)
where
2aly (x)

—_ (104)
I, (x)

Fo) = I K (0) =3 — (5

Defined in this manner, F(x) > 0 forz < Xy, 1.€., it is positive for all unstable modes and

negative for all stable modes.

To obtain the Lagrangian function for the cylinder, we must find the kinetic energy of
the motion resulting from the varying amplitude. Since we have assumed that the fluid
is incompressible, a velocity potential, ¥, exists which satisfies Laplace’s equation. And
the solution for the velocity potential appropriate to the problem on hand is

Y = BIy(kr) cos ks, (105)

where B is a constant to be determined. The components of the velocity derived from
the foregoing potential are

ur=%= +BEkI;(kr) cos ksz (106)
and 5
uz=a—l’g=‘ — BRI (kr) sinkz. (106a)

The constant of proportionality, B, in the foregoing equations must be determined
from the condition that the radial velocity, #,, at » = R must agree with that implied
by equation (52); i.e., we should have

BkI,(ER) cos kz=%cos kz. (107)
Hence ) p
a

B_kII(x_)EZ' (108)
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GRAVITATIONAL STABILITY 131

From equations (106) we obtain, for the kinetic energy per unit length, the expres-
sion (cf. eq. [69])

R
T=4wpBk [ (I (kr) + 12 (k)] rdr
° (109)
1 R
= 3w pB?%k? % Iy(x) I, (),
or, substituting for B from equation (108), we have
I, (x) [da\?
— 1 2 70 el

T=3mp xI; (x) dt) 110

The Lagrangian function (per unit length) for the infinite cylinder is therefore given by

Iy (%)

o1
L=3T—-B 27rpR2x11(x)

da\?
E) + 242 *RGF () a?. am

The equation of motion for @ derived from the Lagrangian (111) is

I,(x) d%
2 2= 2,2
TpR x1,(x) di? 472p’R%GF (%) a, (112)
or, alternatively,
d’a xI; (x) . (H)Z \
7{5—47@!’ gW[IO (x) Ko () — 3] — 7)* 20, (113)

where we have substituted for F(x) in accordance with equation (104). The solution for
a is therefore of the form

a = Constant et ¢ | ! (114)
where
2 — x1, (%) —1 _(E)z 2
g 41er§ P o) Ko@) =31 —(37) @ } a15)

Accordingly, ¢ is purely imaginary for x > x, and is real for x < x,,; this is in agreement
with the fact that all modes with x > x, are stable, while all modes with x < x, are
unstable.

As defined by equation (115), ¢ = 0 both for x = 0 and for x = w,. There is, there-
fore, a determinate intermediate value of x—say, x,,—for which ¢ attains a maximum—
say, qm- The wave number x,, clearly represents the mode of maximum instability; for it is
the mode for which the amplitude of the deformation increases most rapidly. The wave
length

A =—, (116)

corresponding to the wave number x,,, gives approximately the length of the “pieces”
into which the cylinder will ultimately break up: for the component with the wave
length A, in the Fourier analysis of an arbitrary perturbation, is the one whose ampli-
tude will increase most rapidly with time and, therefore, represents the mode in which
the instability will first assert itself. Finally, it is clear that 1/g,, gives a measure of the
time needed for the instability to make itself manifest.

In Table 1 the values of x, and ¢,/(47Gp)'/? are also listed. As in the case of x,
(§ 10), we can give explicit formulae for x,, and ¢., for H > H,. Since for H > H, we are
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132 S. CHANDRASEKHAR AND E. FERMI

concerned only with values of x << 1, we may replace the Bessel functions which occur
in the expression for ¢ by their dominant terms for x — 0. Thus

2
g=4rGp | — 3t (v i+ log i) —w ()} (E>E). aw
The expression on the right-hand side attains its maximum when

2
(r+3+ log3w) +3+2 (&) 0. a1
Hence )
2 2
Tm=2 exp i — (v+1) -2 (—g) §=O.41318_2(H/H‘) (H>H, . 119

The corresponding expression for ¢, is
@n = Fn(4nGp)/? (H>H,) . 20

These formulae emphasize the fact, apparent from an examination of Table 1, that, as
the strength of the magnetic field increases, not only does the wave length of the mode of
maximum instability increase exponentially, but the time needed for the instability to
manifest itself also increases exponentially.

TABLE 2

WAVE LENGTHS A AND A,, AT WHICH INSTABILITY SETS IN AND
AT WHICH IT IS MAXIMUM AND CHARACTERISTIC TIME, g3,
NEEDED FOR INSTABILITY TO MANIFEST ITSELF FOR CASE
R = 250 PARSECS AND p = 2 X 1072 GM/CM3

H Ay Am g
(Gauss) (Parsecs) (Parsecs) (Years)

0............ 1.5X108 2.7X103 1.0X108
1.25X10°8. ... .. 1.9X103 3.3X1038 1.2X108
2.5 X10°8...... 3.3X108 5.6X108 1.8X108
3.75X1078. ... .. 6.8X103 1.1X104 3.6X108
5.0 X10°8...... 1.7x10¢ 2.8X10¢ 8.7X108
6.25X10°8, ... .. 5.2X10¢ 8.6X 104 2.7X10°
7.5 X108, ... .. 2.1X108 3.4X108 1.1X10®
10.0 X107%, .. ... 6.9X108 1.1X107 3.5X101

12. Numerical illusirations.—To illustrate the theory developed in the preceding
sections we shall take, as typical of a spiral arm of a galaxy,

R = 250 parsecs and p=2 X 10~ gm/cm?. (121)
The corresponding value of H, is (cf. eq. [93])
H, = 5.0 X 105 gauss. (122)

For these values of the physical parameters, the nondimensional results given in Table 1
can be converted into astronomical measures ; they are given in Table 2. From the values
given in this table it follows that between H = H, and H = 2H, the characteristic time
of the instability becomes so long that, for all practical purposes, the instability is
effectively removed by the presence of the magnetic field.
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GRAVITATIONAL STABILITY 133

IV. THE FLATTENING OF A GRAVITATING FLUID SPHERE UNDER
THE INFLUENCE OF A MAGNETIC FIELD

13. The formulation of the problem.—In this section we shall consider the gravitational
equilibrium of an incompressible fluid sphere with a uniform magnetic field inside and
a dipole field outside. We shall show that under these circumstances the sphere is not a
configuration of equilibrium and that it will become oblate by contracting along the axis
of symmetry.

We suppose, then, that initially the magnetic field in the interior of the sphere is
uniform and of intensity H in the z-direction. In spherical polar co-ordinates (7, 8, ¢)
the components of H in the radial (r) and the transverse (8) directions are

HO®=Hu and HP=—H(l—p)2 (r<R), 129

where u = cos 6 and the superscript ¢ indicates that these are the components of the
field imside the sphere.

When the field inside the sphere is uniform, that outside the sphere must be a dipole
field given by

3 3
zuw=3<§>y and HW=%H(§>(L—MNﬂ, (124)

where R denotes the radius of the sphere.
The energy, M, of the magnetic field specified by equations (123) and (124) is given by

H2 © +1 R 6
M=o ok + 1 [ () (et k(1) ) rdrdu

(125)
= 1HR®.

Let the sphere be now deformed in such a way that the equation of the bounding
surface is

r(w) = R+ ePi(y) , (126)

where ¢ K R, u = cos 6 (9 being the polar angle), and P;(u) denotes, as usual, the
Legendre polynomial of order /. We shall call such a deformation of the sphere a “P;-
deformation.” We shall investigate the stability of the sphere by examining whether or
not it is stable to a P;-deformation.

14. The change in the magnetic energy of the sphere due to a Pi-deformation.—As we have
already pointed out in § 8, an arbitrary deformation of an incompressible body can be
thought of as the result of applying to each point of the body a displacement §. And if,
as in § 8 (egs. [59] and [60]), we express § as the gradient of a scalar function, ¢, the
solution of Laplace’s equation satisfied by ¥ appropriate to a P;-deformation of a sphere
is

y=Ar"P,(u), az7n)

where 4 is a constant. The corresponding expressions for the components of § are

_ 9

Er=o = Alr'7'Py(p) (128)
and
fo= e A (1= )P ) 280
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134 S. CHANDRASEKHAR AND E. FERMI

where a prime is used to denote differentiation with respect to u. According to equation
(126), at r = R, &, = ePi(u); this determines 4, and we have

1—1 -1
fo=e(F) Pitw and go= =5 (%) (1= )P, (a) . az9)

Now the deformation of a body will alter the prevailing magnetic field; and, since in a
medium of infinite electrical conductivity a change in the existing magnetic field can be
effected only by bodily pushing aside the lines of force, it follows that

SH=curl § X H). (130)

[The truth of this last relation can be established in the following way: Suppose that the
displacement § takes place as a slow continuous movement so that if u denotes the
velocity, u = 9€/d¢ (i.e., if quantities of the second order of smallness are neglected). On
the other hand, when the electrical conductivity is infinite,

0E= —u X H,

where 8E is the electrical field resulting from the changing magnetic field 6H in ac-
cordance with Maxwell’s equation,

d
curl 0F = — 3 o0H .

Combining the last two equations, we have

curl(atXH>———(6H)

The relation (130) is simply the integrated form of this equation.]
When the fluid is incompressible (i.e., when div § = 0 in addition to div H = 0),
equation (130) can be written alternatively in the form

6H = (H-grad)§ — (§-grad)H . (131)

And when the initial field is homogeneous, equation (131) simplifies still further to

6H = (H-grad)§ . (132)
In spherical polar co-ordinates the foregoing equation is equivalent to
6HT=<Hra r ae) Er""'liﬁgg (133)
and
6 r
These equations in conjunction with equations (123) and (129) give
615!0)—615{0—1)]{!~ P (u) (134)
and
dHM = —eHRl_ (1 —pu)12P)_ (u) . (134a)
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GRAVITATIONAL STABILITY 135

The corresponding change in the internal magnetic energy density is given by

|H|2>___H(> SH

(135)
HZ TZ—Z ,
=eq—mrt (=D wP )+ (=) P (W],
On further simplification this reduces to
H H2 rl 2
5(] ’) 1)4 7= s P2 (1) . (136)
Hence, when averaged over all directions, this is zero except when / = 2, in which case
|H|>\_ e H _ 9.
82 ) ir R (1=2); asm

the corresponding change in the internal magnetic energy, AJ(?, is given by
A = LeH?R? . (138)

15. The change in the external magnetic energy of the sphere due to a Pi-deformation.—
Writing the magnetic field outside the deformed sphere in the form

R\
HO=H (7) ut SH® (139)
and
R\
H{ = 1H (7) (1— )1t 5 HE, (1308)

we shall suppose that $H(*) and 6H{* are derivable from a magnetic potential 6¢(9). Since
the magnetic potential satisfies Laplace’s equation, the solution for §¢(9 must be ex-
pressible as a linear combination of the fundamental solutions P;(u)/77*!, which vanish
at infinity.

We shall find it convenient to write the solution for ¢ in the form

1—1 (RY! Ry
5p(©) = _egg_l_(l—f-)Pl_l(mzAj(;) P, (140)

where the A;s are coefficients to be determined. The expressions for SH® and 6H®
derived from this potential are

SHO =el] (1~ DRy +34,GH DS Pw] aw

and

1 R!

- R
5H<e>=eH§ = e Pla(w) 34,7

P (u) % (141a)

The coefficients 4 ; in equations (141) and (141a) can be determined from the condi-
tion that the component of the magnetic field normal to a bounding surface must be
continuous. To the first order in e this condition requires that

apP
{H®} prep,+ {HP RR;(I — 9 1/23—1

(142)
= ; ; dapP
{Hﬁl)}R‘F‘Pz"I‘ {H(ﬁ”}R—;(l — )12 ayl,
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136 S. CHANDRASEKHAR AND E. FERMI

where —(e¢/R)(1 — p®)Y29P;/du is the angle (to the first order in €¢) which the deformed
boundary makes with the 6-direction; the terms in Hj in the foregoing equation arise
from this latter circumstance. Now, according to equations (124), (139), and (140),

(HOVrer+ (HP] 51— Pty (1-3 5 7)) .

(143)
oP
3 (1 =) A g H{ (U= DPat 24, + D P,
while, according to equations (123) and (134),
) ) oP
(HO} pver,+ HP} e g (1= w2t = Hu
(143a)
d
tE HU= P g H (L= i) 5

and the equality of the expressions on the right-hand sides of equations (143) and (143a)
requires

j d
SA4;(j+1)P;=3uP,—2(1 2)_&
3 (144)
=garry GHD G+ 2D P =10 = DPis}
Hence
__3a-1) 3(+1)
Al_l—_Z_(Tl—i——l_)—’ A= 7RI (145)
and |
A;=0 for j#l—1 or I+1. (145a

Inserting these values of 4 in equations (141) and (141a), we obtain

— ! 1+2
S H () =€H§ (12 (12)1_5_%1';2) ,Zla+1Pl—1(#) + 3 (lztzll)_ill-i)—:Z) R Py () g (146)
and

-1 2 3 1 1+2
smp =) (D) IfﬂPz 0+ 2D R ol

Returning to equations (139) and (139a), we can write the change in the external
magnetic energy, AJR(®; to the first order in ¢, in the form

ameo= [ff Y et - rardud,

T R+eP >r>R
(147)

tiz [ [ ) tpi a7 om0} idra.
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GRAVITATIONAL STABILITY 137

After some minor reductions we find

(e) +1
A =i652R2f_1 (1P, (u) +31P,(u) du
@ R (l 1) 1+2) R
e [ Tare [ (BY P R e e )

30U+1) (U+2) RH?
2(214+1)

1 (RY (I—1) (I+2) R
d*‘(?)f’i(“)? TG P (W)

_|._

75 P () g (148)

+ieH’2Lmdrr2f

3U4+1) R‘“

EEXCTES O l+1(“)§

From this equation it is evident that AJ¥® vanishes (to the first order in €) for all de-
formations except a Py-deformation. And for a Pz-deformation we have

+
ame = gerwe [ 1Py V2du 3R [T LR ) 3 w0
or
A () =T eH’R? (I=2). (aso

Finally, combining equations (138) and (150), we obtain
AN = AEU&(")—}-AEIR(&)— 9 H2R2 (151)

for the total change in the magnetic energy due to a P,-deformation; it vanishes to this
order for all higher deformations.

We have, therefore, shown that the change in the magnetic energy is of the second order
in € for all deformations of the sphere except a Py-deformation; and for a Py-deformation it is
of the first order in € and is given by (151). Moreover, for a P,-deformation AY¢ > 0 when
the deformation is in the sense of making the sphere into a prolate spheroid; and A < 0
when the deformation is in the sense of making the sphere into an oblate spheroid.

16. The change in the gravitational potential energy and the instability of the sphere to a
Py-deformation.—The change in the potential energy, AQ, due to a P;-deformation can
also be computed. The result is well known for a Pp-deformation. For a general P;-
deformation we can evaluate AQ by following the procedure used in § 8. We shall not
give here the details of the calculations, which lead to the result

3{-1) 2GZM2
Ac (2l+1)2<1e) sz

The change in the potential energy is therefore always positive and is of the second order in e.
This is in contrast to AYR, which, as we have seen, is of the first order in € for a Pe-de-
formation and is negative for a deformation which tends to make it oblate. We can there-
fore conclude that the sphere is unstable and that it will tend to collapse toward an
oblate spheroidal shape. To estimate the extent to which this collapse may proceed, let
us consider AQ + AR for a Ps-deformation. We have (cf. egs. [151] and [152])

AQ—}-ASDE— 3 GM e+ 2 HR% (I=2). asy
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As a function of ¢, AQ + AR has a minimum which it takes when

6 GM?

25 R3 e+ 9H2R2—0 (154)
or
e _15SHR 155)
R 8 Cir

If H, denotes the value of the constant magnetic field inside the sphere for which It
(given by eq. [125]) is equal to the numerical value of the gravitational potential energy
Q (= — 3GM?/5R), then

3 GM?

1
PR =55

(156)

In terms of H, defined in this manner, we can rewrite equation (155) in the form

€ H \?
R4S (IT) : asn

We may interpret this relation by saying that when a star has a magnetic field approach-
ing the limit set by the virial theorem (cf. Sec. I), then it tends to become highly oblate;
in this respect the magnetic field has the same effect as a rotation.

V. THE GRAVITATIONAL INSTABILITY OF AN INFINITE HOMOGENEOUS MEDIUM
IN THE PRESENCE OF A MAGNETIC FIELD

17. The statement of the problem.—I1t is well known that, by considering the propaga-
tion of a wave in an infinite homogeneous medium and allowing for the gravitational
effects of the density fluctuations, Jeans® showed that the velocity of wave propagation
is given by

Vo=V (c2—4xGp/ k?), (158)

where ¢ = +/(vp/p) denotes the convectional velocity of sound and % is the wave
number. Accordingly, when .

k< c(4mpG)12, (159)

the velocity of wave propagation becomes imaginary; and under these circumstances the
amplitude of the wave will increase exponentially with time. The inequality (159) is
therefore the condition for gravitational instability; this is Jeans’s result. In Section V
we shall show that Jeans’s condition (159) is unaffected by the presence of a magnetic
field. The physical reason for this is evident for a deformation in which the density waves
are perpendicular to the lines of force because the motion of the particles in this case will
be parallel to the lines of force and therefore will not be impeded by the magnetic field.
But also a density wave forming an angle with the lines of force may be obtained by
particle motions parallel to the lines of force, as shown in Figure 2.

18. The three modes of wave propagation in the presence of a magnetic freld and the condi-
tion for gravitational instability.—Consider an extended homogeneous gaseous medium
of infinite electrical conductivity, and suppose that there is present a uniform magnetic

& Astronomy and Cosmogony (Cambridge: At the University Press, 1929), pp. 345-347.
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field of intensity H. Then the fluctuations in density (8p), pressure (8p), magnetic field
(h), and gravitational potential (V) are governed by the equations

u 1

pm=74—ﬂ~_(curlh><H) —grad é6p+pgrad 6V,
a—h=curl (uXH), 160
1

0 .

&6'[): — p div u,

and
VeV = —4xGép .

If the changes in pressure and density are assumed to take place adiabatically, then

8p = c%p . (te1)

,J/4 /:/>

L

Lines of Force

F1c. 2.—Illustrating why the presence of a magnetic field does not affect Jeans’s condition for the
gravitational instabilily of an infinite homogeneous medium.

We shall seek the solutions of equations (160) and (161) which correspond to the
propagation of waves in the z-direction. Then d/3dz is the only nonvanishing component
of the gradient. And if we further suppose that the orientation of the co-ordinate axes is
so chosen that

H=(0,H,H), (162)

it readily follows that %, = 0; and we find that equations (160) and (161) break up into
the two noncombining systems:

ou, H,oh, dh, ou,

=z = 03
3 —drd9z’ o1 " Heggs (63

P
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and
oy H, ohy_
ot  4rx 3z
S By dhy 0 9
+4 Ty cﬁﬁp pEBV—O,
ahU+H = _Hz%ifzﬂ=0, (164)
d ou,
a7 0pTr5,=0,
i 4
Equétions (163) can be combined to give
*h, HY 9h, q o°u,  H> 8’u, 165,
312 4drp 932 an a2~ 4dmp 912"

These equations are the same as those leading to the ordinary hydromagnetic waves of
Alfvén propagated with the velocity

H.

Va= Tty

(1662

This mode of wave propagation is therefore unaffected by gravitation and compressi-
bility.

Turning next to solutions of equations (164), which also represent the propagation of
waves in the z-direction, we can write

a . 9 )
== = 7
5= W and Y ik, (167)

where w denotes the frequency and % the wave number. Making the substitutions (167)
in equations (164), we obtain a system of linear homogeneous equations which can be
written in matrix notation in the following form:

H,

pw k ir 0 0 0 Uy
0 —k ?fl pw — k¢t kp hy
=90. (168)
kH, w —kH, 0 0 u,
0 0 —kp w 0 6p
0 0 0 47G — k? oV
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The condition that equation (168) has a nontrivial solution is that the determinant of
the matrix on the left-hand side should vanish. Expanding the determinant, we find that
it can be reduced to the form

() -l (=5 @) +ims (o100 oo

In terms of the velocity of wave propagation, V = w/k, we can rewrite equation (169)
in the form

Ve— (Vise?d + VHV24ViVE=0, (170)

where ¢ denotes the angle between the directions of H and of wave propagation and V;
and V4 have the same meanings as in equations (158) and (166).

It is seen that equation (170) allows two modes of wave propagation. If V; and V,
denote the velocities of propagation of these two modes, we conclude from equation
(170) that

V1V2 = VAVJ
and
Vit Vi="Visec?d + V3. a71)

Accordingly, if Vs is imaginary, then either Vi or Vo must be mzagmary In other words,
one of the two modes of wave propagation will be unstable if Jeans’s condition (159)
is satisfied. The condition for gravitational instability is therefore unaffected by the
presence of the magnetic field. However, as to which of the two modes will become un-
stable will depend on the strength of the magnetic field. Thus for H — 0, the two modes
given by equation (170) approach, respectively, Jeans’s mode and Alfvén’s mode. And
if we suppose that

Vi— Vs and VooV as H—O0, (172)

then it follows from equation (170) that so long as Vi > 0,

Vi—>Vassecd and Vi—>Vycosd as H— o, (173)

Hence, for H— «, the mode which will become unstable when Jeans’s condition is
satisfied will be the mode which for H — 0 is Alfvén’s mode; and the mode which for
H — 0 is Jeans’s mode becomes a hydromagnetic wave for H — « and is unaffected by
gravitation. This “crossing-over” of the two modes with increasing strength of the mag-
netic field is in agreement with what is known’ from the theory of wave propagation in a

compressible medium in the absence of gravitation.

7 Cf. H. van de Hulst, Symposium: Problems of Cosmical Aerodynamics (Dayton, Ohio: Central Air
Documents Office, 1951), chap. vi; also N. Herlofson, Nature, 165, 1020, 1950.
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